Thermoelectric properties of Ba₈Au_{5.25}Ge_{40.3}, type-I clathrate

Petr Tomeš^{1,*}, M. Ikeda¹, V. Martelli¹, P. Popčević², A.Smontara², C. Krellner³, M. Baitinger⁴, D. Nguen⁴, Y. Grin⁴ and S. Paschen¹

¹ Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria

² Institute of Physics, Bijenička 46, POB 304, 10001 Zagreb, Croatia

³ Kristall- und Materiallabor Physikalisches Institut, Johann Wolfgang Goethe-Universität,

Max-von-Laue-Straße 1, Frankfurt am Main, Germany

⁴ Max-Planck-Institut für Chemische Physik Fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany

*petr.tomes@ifp.tuwien.ac.at

The Ba-containing type-I clathrates show promising thermoelectric (TE) properties [1]. Therefore, Ba-Au-Ge type-I clathrates are thus of interest for TE applications as well [2]. Both *p*- and *n*-type conductivity were found in the Ba-Au-Ge system, depending on Au content. Here we present the measurements of the electrical and thermal transport on the *p*-type single crystal Ba₈Au_{5.25}Ge_{40.3} $\square_{0.45}$ along [001], [110] and [111] directions. The sample shows a semiconducting-like behavior. The Hall coefficient *R_H* exhibits a positive sign, pointing on the dominance of electron-like conduction. The Hall mobility μ_H below ~ 100 K follows approximately $T^{-3/2}$ law, while above 100 K the μ_H is temperature independent, which denotes on neutral-impurity scattering. Thermal conductivity κ , measured by steady state method and 3ω method, is rather low with $\kappa \sim 1 \text{ Wm}^{-1}\text{K}^{-1}$ at room temperature. It is interesting to point out that the electrical resistivity, *R_H* and κ along [110] direction revealed a different magnitude compared to [001] and [111] directions. It seem reasonable to assume that this observation is due to different electron-phonon coupling for different directions, as it will be shown by low-temperature κ data.

[1] A. Saramat, G. Svensson, A. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S. Williams, D. Rowe, J. Bryan, and G. Stucky, *J. Appl. Phys.* **99**, 023708 (2006).

[2] H. Zhang, H. Borrmann, N. Oeschler, C. Candolfi, W. Schnelle, M. Schmidt, U. Burkhardt, M. Baitinger, J.-T. Zhao, Y. Grin, *Inorg. Chem.* **50**, 1250 (1250).

We acknowledge financial support from the Austrian Science Fund (FWF project TRP 176-N22) and from the German Research Foundation (DFG project SPP 1386 - nanOcla).